The kitchen laboratory

Molecular gastronomy in action: strawberry ravioli on a spoon before being dropped into a liquid nitrogen bath. Credit: iStockphoto/Thomas_EyeDesign

These days the kitchen is my chemistry lab, and if I were back in college I’d probably be one of the students beating down the door to get in to a cooking science class like this one at Harvard.

Despite my experience with chemical gadgets, the wildest item in my kitchen is a food processor. Watching what molecular gastronomy folks cook up next soothes my strange secret longing for a rotary evaporator and a supply of liquid nitrogen. So last month, I headed over to the Experimental Cuisine Collective meeting to find out about a chemical kitchen topic, flavor pairings.

Bernard Larousse started with a fascinating side note about the partnerships that he and his colleagues are building between chefs and scientists with the Flemish Primitives. Chefs used ultrasound to make stock, but my favorite funky food gadget had to be the fluidic plate (my term, not his). Researchers developed plates that work like microfluidic chips (see earlier post), electrical circuits within the plates allow chefs to deliver water droplets to the food at a defined point in time. Sure, this isn’t really practical at home (Yes, I want one). But this plate has the right mix of posh and geeky food style.

But back to the flavor chemistry. Eighty percent of taste comes from the sense of smell, as most of us notice when we have a cold and all food tastes like cardboard. But what makes two flavors work together? Researchers have analyzed the flavor components and compared them. A good match is all about having a similar mixture of component flavor compounds. This doesn’t take into account other issues such as texture. If you have two foods where the flavors don’t overlap, you can bridge between them with a food with flavor components that overlap between the other two: cheese and vanilla don’t match, but they work fine if you add coffee.

The website maps these chemical relationships on a wheel. Like foods are grouped together on branches, and the distance from the central food indicates how well it matches. Take this one for strawberries: I don’t think I every would have matched them with mussels. Not only can you make new matches, you can also figure out how to replace a flavor with other components with related flavor profiles.

That last piece seems to be particularly useful for vegetarian foodies, who’d like to replicate the robust flavor of meat. Larousse also points out that it can be a way for locavores to replace non-local ingredients. Replacing an ingredient like citrus with other natural ingredients still seems a bit more like a science project at this point– something that molecular gastronomers might try for fun. Ultimately, it’s probably easier for most of us to go buy an orange.


MotW: Nobel Prizes all about the carbon

Carbon is the big star among the science Nobel Prizes this week. Sure, IVF is a big deal, too. But, today, I’m all about the element that ruled my life as an organic chemist. Carbon more than math is the universal common denominator of ‘O-chem. “As my undergraduate professor once quipped , “You just have to be able to count to four: four bonds to carbon.”

, from Wikimedia Commons”]But otherwise the two prizes aren’t all that similar. The physics prize for the discovery of graphene— sheets of carbon the thickness of a single atom– recognizes a discovery just a handful of years old. It’s superstrong, transparent, incredibly dense– fascinating properties that have scientists excited about what we might be able to do with it. But what has it done for the world lately? Not much, at least not yet. Some scientists think the award is premature.

The chemistry prize was awarded for classic organic synthesis: using palladium, a matchmaker metal with the remarkable ability to help chemists link together complicated patterns of carbon atoms. Although the enzymes between living cells are gifted at making these types of connections,  stringing carbon atoms together in precise ways  within a flask in a traditional chemistry lab is both art and science (and often an exercise in frustration).

But this is one elegant solution. The scientists discovered the reactions in the 1970s, but the chemistry that had come into its own by the time I started graduate school in the late 1990s.  As a result, my chemist mind thought, “oh, really, they haven’t awarded a Nobel for this yet?” But there’s no question that this science has touched people all over the world.  The pain reliever I took yesterday (Naproxen, the active compound in Aleve), cancer drugs, plastics,  compounds in TVs and other displays and flexible screens all result from chemists using these techniques on an industrial scale.

Naproxen structure via Wikimedia Commons